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Kage Game Overview 

• Game Components: 8x8 chess board, 2 Kings

• Starting Position: Kings located on a diagonal in the center of the board

• Turn-Based Gameplay: Players can either move their King or place one wall 
on each turn

• King Movement: Move up, right, left, or down one square; cannot move 
diagonally, move into the space of another King, move off the board, or 
move through a wall

• Win/Lose Condition: Form a Kage (walls) around the opponent's King to 
win; form a Kage around your own King without the opponent's King 
included to lose



Kage: The Abstract Strategic Game
A similar game you might know "Kono" from Korea

• Two players attempt to capture each other's pieces by jumping over 
their own pieces and landing on the other player's pieces

• Objective: Capture the opponent's pieces by jumping over your own 
pieces and landing on the opponent's pieces

• Unique Features: Small but interesting strategic game with simple 
rules but complex gameplay

• Skills Developed: Enhances math, problem-solving, abstract thinking, 
and spatial perception skills 



Visual Interface

K1: King 1
K2: King 2 as Opponent

Walls (Green lines): Can be placed by either player to block 
movement:

Condition to Win: K2 wins if they form a wall around K1



Demo
(minimax wins)



Methods and Algorithms

• Expert Systems: Incorporates knowledge and rules from domain 
experts to make decisions and suggest actions

• Alpha-Beta Pruning in Minimax Algorithm: Determines the best move 
to make by minimizing the maximum possible loss

• Genetic Algorithms: Uses evolutionary techniques to optimize game 
strategies and decision-making

• Deep Q-Network Reinforcement Learning: Learns through trial and 
error by receiving feedback or rewards based on actions taken



Minimax Algorithm

• The minimax algorithm is used to find the 
optimal move for the player, assuming that 
the other player is also playing optimally.

• The algorithm constructs a search tree that 
represents all possible moves in a game.

• The tree is explored recursively, with each 
level representing a player's turn, and each 
node representing a possible move.

• At each level, the algorithm alternates 
between maximizing and minimizing the 
potential outcome of the game.



Alpha-Beta Pruning in Minimax Algorithm

• Alpha-beta pruning is a technique used to optimize the minimax 
algorithm by reducing the number of nodes that need to be 
evaluated.

• It works by cutting off the search tree at nodes where it can be 
determined that a certain move will not be chosen. 

• If the score of a node is worse than alpha (for the maximizing player) 
or better than beta (for the minimizing player), then the search can 
be stopped at that node, as it is already known that this node will not 
be chosen.

• This greatly reduces the number of nodes that need to be evaluated 
and can speed up the algorithm significantly.



Genetic Algorithm

• The genetic algorithm here uses a neural network to make 
decisions. However, in this case, there is no backpropagation, or 
learning within the networks. Instead, a population of agents, 
where each agent is a neural network, is created with random 
weights and biases. They then compete against each other, and 
the best agents are used to populate the next generation. Over 
time, an optimal agent is approached. 



Genetic Pseudocode

1. Generate a population of Neural Networks(NNs) with random 
weights and biases.

2. Let them compete against one another round-robin style, utilizing 
only feedforward,  and tally up # of wins.

3. Select the best performers to be the parents of the next 
generation. 

4. Repopulate using crossover and mutation.

1. Crossover means that aspects of the parental NNs are 
chosen at random. For example, every NN here has 4 
weight matrices. So, when forming the child’s W1, set it 
equal to either parent1’s W1 or to parent2’s W1.

2. Mutation is the random introduction of new futures so that 
the population can change paths with time.

5. Repeat steps 2-4 for some # of generations. 

6. Save the best agent after training to be a reusable competitor. 

Example code: Crossover and Mutation



Genetic Challenges Faced

• Genetic algorithm was difficult to implement here for a number of 
reasons:

1. This form of genetic algorithm is computationally expensive, so training 
takes a long time.
• That being said, the process of feeding forward through the NNs was not time-

consuming in comparison to other aspects of the project. Great changes in the size of 
the NNs had little effect on the time taken. 

2. There are many variables and parameters that can be changed (population 
size, number of generations, mutation rate, size, and number of the hidden 
layers of the NNs). There is much trial and error involved in tweaking these 
values.

3. Overall, this is not the best AI model to fit this board game, but with some 
fine-tuning and extended training, it is capable of producing a good player.



Deep Q-Network Reinforcement Learning (DQN-RL)

• Deep Q-Network reinforcement learning algorithm uses a neural 
network to approximate the Q-function, enabling an agent to 
learn a policy to maximize its long-term reward by iteratively 
adjusting its action-selection strategy while leveraging 
experience replay and target networks to stabilize the learning 
process.

Updated Q value
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The standard framework for RL algorithms
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Deep Q-Network Reinforcement Learning (DQN-RL)

• The architecture of the DQN model is defined with a 5-layer 
neural network with dropout layers

• An Adam optimizer with L2 regularization is used, and the 
learning rate is scheduled to decay at specific intervals

• Experience replay is implemented with a deque to store 
experiences, and random mini-batches are sampled to 
update the DQN

• The reward function measures the effectiveness of the 
agent's actions by Calculating the number of walls for both 
the player and the opponent

• Assigning weights w1 and w2 in the reward function can help 
to adjust the importance of the number of walls and 
normalize the reward to be ensured that the reward values 
are compatible with the neural network's output range

• The agent plays the game and learns from its experiences 
through the 500 epochs

Example code: reward function 



Challenges Faced

• Computational resources: Training a deep learning model, especially 
for a large number of epochs, can be computationally expensive.

• Learning rate and optimization: We are using the Adam optimizer 
with a learning rate scheduler to adjust the learning rate. However, 
the initial learning rate and the decay rate is challenging to have a 
trade-off between exploration vs. exploitation 

• Network architecture: we need to experiment with different 
architectures, such as deeper or wider networks

• Reward function design

• Convergence and training stability



Results and Future Work

• Among all of the methods which are used, Alpha-Beta Pruning in 
Minimax Algorithm performs really well which takes only 2.06 
seconds at depth=2 without pruning, and 0.252 with pruning

• Genetic Algorithm with some fine-tuning and extended training might 
be capable of producing a good player

• Deep Q-Network Reinforcement Learning (DQN-RL) with Monte Carlo 
Tree Search (MCTS) might be capable of selecting actions based on a 
combination of upper confidence bounds and estimated Q-values



Questions?
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