
Kage
The Abstract Strategic Game

AI Project

Group 4: Ethan Page, Saviz Saei, Matthew Rester, Jonathan Butterfield, Caleb Byers

Spring 2023

Kage Game Overview

• Game Components: 8x8 chess board, 2 Kings

• Starting Position: Kings located on a diagonal in the center of the board

• Turn-Based Gameplay: Players can either move their King or place one wall
on each turn

• King Movement: Move up, right, left, or down one square; cannot move
diagonally, move into the space of another King, move off the board, or
move through a wall

• Win/Lose Condition: Form a Kage (walls) around the opponent's King to
win; form a Kage around your own King without the opponent's King
included to lose

Kage: The Abstract Strategic Game
A similar game you might know "Kono" from Korea

• Two players attempt to capture each other's pieces by jumping over
their own pieces and landing on the other player's pieces

• Objective: Capture the opponent's pieces by jumping over your own
pieces and landing on the opponent's pieces

• Unique Features: Small but interesting strategic game with simple
rules but complex gameplay

• Skills Developed: Enhances math, problem-solving, abstract thinking,
and spatial perception skills

Visual Interface

K1: King 1
K2: King 2 as Opponent

Walls (Green lines): Can be placed by either player to block
movement:

Condition to Win: K2 wins if they form a wall around K1

Demo
(minimax wins)

Methods and Algorithms

• Expert Systems: Incorporates knowledge and rules from domain
experts to make decisions and suggest actions

• Alpha-Beta Pruning in Minimax Algorithm: Determines the best move
to make by minimizing the maximum possible loss

• Genetic Algorithms: Uses evolutionary techniques to optimize game
strategies and decision-making

• Deep Q-Network Reinforcement Learning: Learns through trial and
error by receiving feedback or rewards based on actions taken

Minimax Algorithm

• The minimax algorithm is used to find the
optimal move for the player, assuming that
the other player is also playing optimally.

• The algorithm constructs a search tree that
represents all possible moves in a game.

• The tree is explored recursively, with each
level representing a player's turn, and each
node representing a possible move.

• At each level, the algorithm alternates
between maximizing and minimizing the
potential outcome of the game.

Alpha-Beta Pruning in Minimax Algorithm

• Alpha-beta pruning is a technique used to optimize the minimax
algorithm by reducing the number of nodes that need to be
evaluated.

• It works by cutting off the search tree at nodes where it can be
determined that a certain move will not be chosen.

• If the score of a node is worse than alpha (for the maximizing player)
or better than beta (for the minimizing player), then the search can
be stopped at that node, as it is already known that this node will not
be chosen.

• This greatly reduces the number of nodes that need to be evaluated
and can speed up the algorithm significantly.

Genetic Algorithm

• The genetic algorithm here uses a neural network to make
decisions. However, in this case, there is no backpropagation, or
learning within the networks. Instead, a population of agents,
where each agent is a neural network, is created with random
weights and biases. They then compete against each other, and
the best agents are used to populate the next generation. Over
time, an optimal agent is approached.

Genetic Pseudocode

1. Generate a population of Neural Networks(NNs) with random
weights and biases.

2. Let them compete against one another round-robin style, utilizing
only feedforward, and tally up # of wins.

3. Select the best performers to be the parents of the next
generation.

4. Repopulate using crossover and mutation.

1. Crossover means that aspects of the parental NNs are
chosen at random. For example, every NN here has 4
weight matrices. So, when forming the child’s W1, set it
equal to either parent1’s W1 or to parent2’s W1.

2. Mutation is the random introduction of new futures so that
the population can change paths with time.

5. Repeat steps 2-4 for some # of generations.

6. Save the best agent after training to be a reusable competitor.

Example code: Crossover and Mutation

Genetic Challenges Faced

• Genetic algorithm was difficult to implement here for a number of
reasons:

1. This form of genetic algorithm is computationally expensive, so training
takes a long time.
• That being said, the process of feeding forward through the NNs was not time-

consuming in comparison to other aspects of the project. Great changes in the size of
the NNs had little effect on the time taken.

2. There are many variables and parameters that can be changed (population
size, number of generations, mutation rate, size, and number of the hidden
layers of the NNs). There is much trial and error involved in tweaking these
values.

3. Overall, this is not the best AI model to fit this board game, but with some
fine-tuning and extended training, it is capable of producing a good player.

Deep Q-Network Reinforcement Learning (DQN-RL)

• Deep Q-Network reinforcement learning algorithm uses a neural
network to approximate the Q-function, enabling an agent to
learn a policy to maximize its long-term reward by iteratively
adjusting its action-selection strategy while leveraging
experience replay and target networks to stabilize the learning
process.

Updated Q value

𝑄 𝑆𝑡 , 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼[𝑅𝑡+1 + 𝛾max𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡 , 𝐴𝑡)]

Current Q value

Learning rate/
Step Size

Discount
factor

Max Q value
for all actions

𝑆𝑡 𝑆𝑡+1

The standard framework for RL algorithms

Becomes

Agent

Action

State

State

Reward

Environment

𝑆𝑡

Is represented
by

Change
s

Takes

Produces
new

𝑆𝑡+1

𝑎𝑡

𝑅𝑡+1
Is received
by

Is received
by

Is in

Neural
Network

Action

Agent

State

Zoom in

Deep Q-Network Reinforcement Learning (DQN-RL)

• The architecture of the DQN model is defined with a 5-layer
neural network with dropout layers

• An Adam optimizer with L2 regularization is used, and the
learning rate is scheduled to decay at specific intervals

• Experience replay is implemented with a deque to store
experiences, and random mini-batches are sampled to
update the DQN

• The reward function measures the effectiveness of the
agent's actions by Calculating the number of walls for both
the player and the opponent

• Assigning weights w1 and w2 in the reward function can help
to adjust the importance of the number of walls and
normalize the reward to be ensured that the reward values
are compatible with the neural network's output range

• The agent plays the game and learns from its experiences
through the 500 epochs

Example code: reward function

Challenges Faced

• Computational resources: Training a deep learning model, especially
for a large number of epochs, can be computationally expensive.

• Learning rate and optimization: We are using the Adam optimizer
with a learning rate scheduler to adjust the learning rate. However,
the initial learning rate and the decay rate is challenging to have a
trade-off between exploration vs. exploitation

• Network architecture: we need to experiment with different
architectures, such as deeper or wider networks

• Reward function design

• Convergence and training stability

Results and Future Work

• Among all of the methods which are used, Alpha-Beta Pruning in
Minimax Algorithm performs really well which takes only 2.06
seconds at depth=2 without pruning, and 0.252 with pruning

• Genetic Algorithm with some fine-tuning and extended training might
be capable of producing a good player

• Deep Q-Network Reinforcement Learning (DQN-RL) with Monte Carlo
Tree Search (MCTS) might be capable of selecting actions based on a
combination of upper confidence bounds and estimated Q-values

Questions?

	Slide 1: Kage The Abstract Strategic Game AI Project
	Slide 2: Kage Game Overview
	Slide 3: Kage: The Abstract Strategic Game A similar game you might know "Kono" from Korea
	Slide 4: Visual Interface
	Slide 5: Demo (minimax wins)
	Slide 6: Methods and Algorithms
	Slide 7: Minimax Algorithm
	Slide 8: Alpha-Beta Pruning in Minimax Algorithm
	Slide 9: Genetic Algorithm
	Slide 10: Genetic Pseudocode
	Slide 11: Genetic Challenges Faced
	Slide 12: Deep Q-Network Reinforcement Learning (DQN-RL)
	Slide 13: The standard framework for RL algorithms
	Slide 14: Deep Q-Network Reinforcement Learning (DQN-RL)
	Slide 15: Challenges Faced
	Slide 16: Results and Future Work
	Slide 17

